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ABSTRACT

Although quite successful in a variety ofsettings, standard
optimization approaches can have drawbacks within
medical applications. For example, they often provide a
single solution which is difficult to explain, or which can
not be incrementally modified using secondary "soft"
constraints that are difficult to encode within the
optimization. In order to address these issues, we have
developed a probabilistic optimization technique that
allows the user to enter prior probability distributions
(Gaussian) for the parameters to be optimized as well as
for the constraints on the parameters. Our technique
combines the prior distributions with the constraints
using Bayes' rule. The algorithm produces not only a set
of parameter values, but variances on these values and
covariances showing the correlations between parameters.
We have applied this method to the problem ofplanning a
radiosurgical ablation ofbrain tumors. The radiation plan
should maximize dose to tumor, minimize dose to
surrounding areas, and provide an even distribution of
dosage across the tumor. It also should be explainable to
and modifiable by the expert physicians based on external
considerations. We have compared the results of our
method with the standard linearprogramming approach.

INTRODUCTION

There are currently well-developed techniques for parameter
estimation and optimization that are generally applicable
over a wide range of science and engineering problems [5].
Unfortunately, the application of standard optimization
methods within medical applications can be problematic.
First, these methods do not typically provide any sort of
confidence bounds in the parameter values chosen.
Second, they give no insight into the possible
interdependence of parameter values. Third, they often
require an entirely new calculation if new information is
provided dynamically. We approach optimization within a
paradigm of probabilistic constraint satisfaction that
solves these problems.

Constraint Satisfaction and Optimization

Constraint satisfaction is a problem solving paradigm in
which legal values for a set of variables are sought,
subject to constraints on both the possible values for each
variable as well as the relationship between values of
different variables [7]. A constraint satisfaction problem
is formulated by defining 1) a set of variables whose
values are sought, 2) the set of possible values (the

domain) for each variable, 3) the relationships between
variables (the constraints). When the parameters are
continuous variables, then the problem of finding values
that satisfy the constraints optimally is isomorphic to the
problem of optimizing the variables so that some error
function is minimized. We have described an algorithm
for probabilistic constraint satisfaction that should,
therefore, be useful for general optimization [1,2]. We
represent the set of possible values for a variable as
continuous parametric distributions over the range of
possible labels. Initially, a variable distribution is
described based on some prior knowledge of the range of
possible labels (assumed to be Gaussian). The constraints
between variables are probability distributions over
functions that depend on the structural variables (described
below). As constraints are introduced, they cause changes
in the probability distribution for all the variables. The
resulting probability distributions are the posterior
probability distributions of the values for all variables.

Radiosurgery

Radiosurgery is a method for ablating brain tumors with
high intensity radiation [3,4,6,8,9]. The main challenge
in radiosurgery is to develop dosing schemes for which the
dose to tumor is maximal and homogenous, while the
dose to surrounding healthy tissue (especially tissues
involved in critical functions or which are very sensitive)
is minimal. With the advent of high performance robotic
arms to position the xray source, it has become possible
to plan radiosurgical procedures in which the xray beam
impinges upon the tumor from multiple angles, so that
healthy tissues receive low doses compared to the tumor.
The problem of maximizing dose to the tumor and
minimizing dose to healthy tissues becomes one of
setting the strengths assigned to a set of xray beams
impinging upon the tumor from different angles. The
precise models for determining dose to a region [8] are too
expensive to use for optimization of beam intensities, but
the dose through a region, S, can be roughly estimated as
the sum of the intensities of the beams which pass
through the region (see Equation 11).

In general, the dose through tumor tissue should exceed
some critical value, and the dose through normal tissue
should be less than some safe value. The goal of an
optimization program is to find values of the individual
beam intensities that satisfy these constraints.
Schweikard et al have reported a system which uses
standard linear programming to solve this problem. It has
been shown to perform well [8,9]. It is subject,
however, to the pitfalls of standard optimization. It may
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not always converge, does not provide information about
the range of intensity values compatible with the dosing
goals, and provides no information about which part of
the optimization is difficult. We have therefore attempted
to replicate its performance using a system that maintains
second order information about the parameter values, such
as variance and covariance of beam intensities.

MATHEMATICAL FORMULATION

We represent an optimization problem as a vector of
parameters (each parameter is a node in the constraint
network). Each parameter has a prior probability
distribution over the range of possible variable values. In
our current implementation, we represent each distribution
by its first two moments, the mean and variance. The
mean values of each parameter are stored in a state vector,
x. For a structural model with M parameters, the state
vector is:

X = [XI X2 X3 * * * XM]
[1]

The second moment of the state vector is stored in a
matrix. The diagonal elements of the matrix contain the
variances of each parameter. The off-diagonal elements of
the matrix contain the covariances between parameters.

z = h(x)+v [3]
In this work, v is assumed to be distributed normally with
mean zero. We have found that inequality constraints (in
which the equality of Eq. 3 becomes an inequality) can
often be approximated with appropriate Gaussian
distributions.

Given a new constraint, the parameter estimates can be
updated using Bayesian measurement update formulae, as
is used in the Kalman Filter [5]. These formula introduce
non-zero covariances between all parameters that are
involved in the constraint. New values for x and C(x)
are calculated as follows:

Xnew - Xold + K[z-h(Xold)]

C(Xnew) = C(xold) - KHC(xold)
[4]

[5]

where
K = C(xoldw)HT[HC(xowd)HT +C(v)]f

and

H= dh(x)
dx xoW

[6]

[7]
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If we have no information about the relationships between
parameters, then the covariances are zero. As information
about the relationship between parameters is gathered (as
described below), the covariances may become non-zero.

Taken together, the mean vector, x, and the covariance
matrix, C(x), represent an uncertain estimate of the
possible parameter values. In general, two parameters
may have a complicated functional relationship. The
covariance is simply a linearization of this relationship
that specifies whether the values of the two parameters are
correlated. Although a primitive summary of potentially
complicated dependencies, the covariance is often
sufficient (especially using iterative techniques to reduce
estimation error) for capturing important parameter
relationships.

Constraints involving the elements of the state vector, x,
can be used to update the parameter estimates within x
and C(x). A constraint, z, is represented with two
components; a deterministic function, h(x) that specifies
how the value of the measurement depends on (and can be
calculated from) the structural parameters in x, and a
stochastic component, v, that specifies the uncertainty or
tolerance in the information.

Simply put, the new estimate for x is based on the old
estimate plus a weighted difference between the observed
and predicted value of z. The weighting factor, K, is
proportional to the ratio of the uncertainty in the current
estimate and the uncertainty in the constraint.1 If h(x)
is nonlinear in x, then errors in the linearization of h(x)
can be reduced by using a modified update formula [5].

These update formulae use the information in the
covariance matrix to make concerted changes in parameter
values. Thus, introducing a constraint that provides
information about parameter xi, will modify the value of
variables which are highly correlated with xi. However, if
the relationship between parameters is nonlinear, then the
covariances may not lead to precisely correct new values.
We have described an iterative procedure to effectively
minimize these errors [1].

With the measurement update equations, we can solve a
constraint satisfaction formulation of optimization.

1Note that the term within the reciprocal is a first order
estimate of the uncertainty in the measurement as
predicted by the model, since the variance of z, C(z) =
C(h(x) + v) =C(h(x)) + C(v) - HC(x)HT+ C(v).
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Example and Evaluation

Figure 1. CT slice of tumor (middle right) used in testing.

A starting set of parameters is generated (based on
previous experience or with a broad, uninformative prior
distribution) and measurements are introduced (serially or
in one large vector of values) to update the estimates of
mean and variance. The final values of x and C(x)
represent the posterior distribution of the parameter values
that satisfy the constraints. We define the residual error
for each constraint as follows:

h(xnew) Zi

Vi
[9]

where Ei is the error for an individual constraint, z is the
measured value, h(xnew) is the predicted value based on
the best estimate, and a is the variance of vi.

APPLICATIONS TO RADIOSURGERY

For radiosurgery, the vector to be estimated, x, contains
the values of the beam weights for N beams that impinge
on the tumor mass:

X =[Wl W2 W3 *.- WN] [10]

We generate one constraint for every volume element
through tumor or sensitive tissue. If there are M such
volume elements, then a constraint for the individual
volume element through which a subset S of the N beams
pass is represented as:

Ds= Xwi+v
iES [1 1]

DS, is the target dose for the volume element (based on
its status as tumor or normal). v is a random variable
describing the tolerance we have for variation in the value
of DS. Given a starting value for the parameter vector,
and all the constraints, we can calculate an improved
estimate of the parameter values.

We illustrate the performance of our method on a tumor
that is shown in Figure 1. The irregularity of this tumor
makes it a good test of the ability to refine the beam
intensities. As a control, we applied the standard linear
programming algorithm. For this tumor, there are only
two types of tissues: normal and tumor. The linear
programming technique finds a set of beam weights which
produce a dose to all tumor tissues between 2000 and
2300 R (100 Rad = 1 Grey), while minimizing total dose
to normal tissue. We translated these constraints into
normal distributions; tumor tissues were constrained to
have a mean dose of 2100 R with a variance of 1000 R2.

The initial mean values for the beam weights were set to
150 R with a variance of 1600 R2. The mean value is
based on an estimate of how many beams travel through
the tumor, and what the average dose to the entire tumor
should be. The variance is chosen to allow a range of
values, while minimizing the possibility that the program
chooses a negative weight for a beam (a physical
impossibility). The computational procedure was as
follows:

1. Using the starting parameter estimates, all constraints
were used to update the parameter estimate.
2. Any beam weights that were negative after step 1,
were set to 0, and removed from the optimization.
3. The overall satisfaction of constraints is measured,
using Equation 9. If there is no change in the result
(within a user defined tolerance), then the algorithm halts.
4. If the residual errors are still large, the remaining
beam weights were retained and used for another round of
updating with the constraints (that is, loop to step 1).

Evaluation

In order to evaluate the internal consistency of our result,
we analyzed the the distribution of errors for all
constraints. The average error for all constraints is 1.57
SD. The error distribution assures us that the
optimization was able to find a solution that is reasonable
with respect to the provided constraints.

A more significant evaluation of our result entails a
comparison with the "gold standard" of linear
programming. There are two parameters with which we
compared the methods: ability to deliver dose specifically
to the tumor (that is, match the contour of the tumor
precisely and minimize dosage to surrounding normal
tissue), and ability to deliver tumor dose homogenously
(that is, all tumor regions get approximately the same
dosage). Figure 2 compares the ability of linear
programming and probabilistic optimization to deliver
adequate radiation to tumor cells. Figure 2AB shows for
each of the two methods, the three-dimensional contour of
volume elements that receive least 50% of the maximum
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Figure 2. 2A and 2B show contours of volume elements
receiving at least 50% of maximum dose. They each
contain the contour of the tumor, as defined by an expert.
2C and 2D show the tumor dose on the slice of tumor
shown in Fig 1. for each method. (2B/2D = our method).

dose delivered to any volume element. Superimposed
upon these contours are the tumor contour defined
manually be an expert physician. Ideally, all tumor
volume elements will have nearly 100% maximum
dosage, and the drop off would be precipitous. In practice,
we examine the way in which the 50% contours match the
manually segmented tumor boundary to get a feeling for
the rate at which the tumor dose falls at the edges of the
tumor. Figure 2CD demonstrates, for a single section
through the tumor, how the incoming xray beams
concentrate the dose within the tumor.

The homogeneity of dose distribution is illustrated by
Figures 2 and 3. In the ideal, Figure 2CD would have a
flat plateau in the area of tumor, and a steep drop off to
zero for the surrounding area. Both linear programming
and probabilistic optimization provide quite good
approximations to a plateau. Figure 3 plots the volume
of tumor exposed to increasingly greater percentages of the
maximum dose. For example, it shows that for both
results virtually the entire tumor (of volume 3800 mm3)
receives at least 80% of the maximal dose received by any
tumor volume element, but that this ratio falls off rapidly
so that only about half the volume elements (2000 mm3)
receive 90% or more of the maximal dose. Only about
15% of voxels receive 95% or more of the maximal dose.
The integrated area of the curves in Figure 3 is a measure
of the submaximal radiation or efficiency. For a perfect
dose scheme, the integral should be 100. Both the linear
programming and constraint satisfaction approaches
produce efficiencies of 88%.

We conclude that the probabilistic optimization provides
solutions that are compatible with linear programming
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Figure 3. The number of tumor volume elements (mm3)
receiving a percent of the maximum dose (black is our
method). The tumor volume is 3800 mm3 and virtually
all the tumor receives at least 80% of the maximum dose.

methods. We have now run other comparisons (not
reported here) that produce similar agreement. The chief
advantage of our method is the additional information
provided by the probabilistic optimization. First, we have
explicit confidence in the values for each beam strength.
Figure 4 shows a plot of distribution of variances for all
beams. These variances provide specific information that
can be used to understand which beam values are critical to
the dosage. For example, most of the beams have a
variance between 10 and 40, indicating that these beams
can be adjusted 3 to 7 units without significant effect on
the final dose. Some beams, however, have variances up
to 80 or more, which indicates significantly more
flexibility for adjustment.

Secondly, the covariance matrix provides information
about the correlated beam strengths. This allows us to
identify key subsets of interacting beams (perhaps across
multiple constraints, and not apparent by a scan of
individual constraints). For example, Figure 5 plots the
largest covariances within the final set of nonzero beams.
This information suggests which clusters of beams (and
the tumor regions they affect) are tightly linked.
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Figure 4. Histogram of the variance of beam
intensities for 152 final nonzero beams. Most
beams are defined tightly (with variance of 20 R2),
but some have more freedom to change values.
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DISCUSSION AND CONCLUSIONS

These results demonstrate that a probabilistic constraint
satisfaction formulation can produce answers comparable
with linear programming. Although we have not
demonstrated any practical use of the variance/covariance
information, we believe that there are clear advantages of
having the second order information in the context of
semiautomated systems which will allow user interaction
and modification. First, new constraints can be
immediately introduced using the update equations (4-7)
given above. The covariance information allows all
beams to be updated in a concerted fashion. Second,
information about variance of beam intensities can be used
to immediately recognize which beams have a narrow
therapeutic range, and which can be varied within a broader
set of values.

This approach to parameter estimation has proven quite
versatile in a number of domains, including the estimation
of macromolecular structure, model driven CT image
segmentation, and automated interpretation of MRI
images of the cervical spine [1]. It is possible to solve a
large variety of general optimization problems within this
framework: the variables make up the state vector, and
the constraints are the conditions that restrain the
optimization function.

The use of two moments of a distribution can be limiting:
there are clearly constraints on structure that may be
multimodal or in some other way non-Gaussian. Also,
we may want to represent non-normal posterior
distributions for our variables. The introduction of higher
moments adds computational complexity. However,
because of their importance for some problems, we are
currently investigating ways to relax the assumption of
normality in the context of massively parallel computers.
We have recently reported an extension in which arbitrary
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Figure 5. Covariance matrix (as defined inE0. 2)
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distributions are represented as mixtures of Gaussians [2].

The computational complexity of our approach is high
due to the cost of maintaining second order information.
There are matrix multiplications which are o(N3). In
addition, for multiple-valued constraits, there is a matrix-
inversion in Equation 6. However, we have shown that
the method is amenable to parallelization [2].
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